Skip to main content

Type

Presentation, Research Paper

Year of Publication

Any

Type

Presentation, Research Paper

Year of Publication

Any
The testing provided data to allow the ability of Computational Fluid Dynamics (CFD) modelling to predict accumulation of natural gas from transient releases and temporal and spatial variations in explosion loading. Strain and pressure data was also gained on the structural response to allow assessment of structural modelling. 
Hydrogen Production, Storage, Distribution and Use
Author(s)
Christopher A. Cavanagh, PE
Contents 1 Climate Change Policy Objective 2 Hydrogen Flexibility 3 Hydrogen Production and Sources4 Hydrogen Properties5 Hydrogen Safety Codes and Standards Overview6 UK Hydrogen Blending Demo Approval7 US Hydrogen Blending Concept8 Pipeline Integrity9 Gas Composition Standards10 Pipeline Standards11 Hydrogen Safety Utilization 12 Conclusion 
Appliance and Equipment Performance with Hydrogen-Enriched Natural Gases
Author(s)
C.J. Suchovsky
Lief Ericksen, P.E.
Ted A. Williams
Dragica Jeremic Nikolic, Ph.D.
Mixing of hydrogen into natural gas, as a means of mitigating environmental concerns associated with the use of fossil fuels, poses a question of performance of appliances designed for use with natural gas, when fuelled by blends of hydrogen and natural gas. This study examines the performance of space and water heating appliances fuelled by methane as a natural gas proxy, and methane/hydrogen blends containing up to 15% hydrogen.
Stockimage_gradient
Introduce the Hydrogen Safety Panel (HSP)Introduce key hydrogen safety resources that are availableOpen discussion on your hydrogen safety issues and needsExplore how the HSP can help the safe rollout of hydrogen and fuel cell technologiesIdentify projects that could utilize the HSP for impactful safety reviews
gradient background
Potential for Hydrogen DDT with Ambient Vaporizers
Author(s)
J.K. Thomas
J. Geng
O. Rodriguez
The ignition of a hydrogen-air mixture that has engulfed a typical set of ambient vaporizers (i.e., an array of finned tubes) may result in a deflagration-to-detonation transition (DDT). Simplified curve-based vapor cloud explosion (VCE) blast load prediction methods, such as the Baker-Strehlow-Tang (BST) method, would predict a DDT given that typical ambient vaporizerswould be rated as medium or high congestion and hydrogen is a high reactivity fuel (i.e., high laminar burning velocity).
gradient background
Ammonia and hydrogen represent opposite ends of the spectrum with regard to the potential blast loading resulting from an accidental vapor cloud explosion (VCE), although many in industry have expressed doubts as to whether either of these fuels actually pose a VCE hazard. Ammonia is some-times discounted as a VCE hazard due to the perceived difficulty in igniting an ammonia-air mixture and/or because of its low laminar burning velocity. Hydrogen is sometimes discounted as a VCE hazard due to the ease with which a hydrogen-air mixture can be ignited and/or because of its buoy-ancy.
Evaluation of flammability limits of H 2 /O 2 /N 2 mixtures in conditions relevant to nuclear waste transportation
Author(s)
Kouame N'Guessan
M. Idir
Jean Pavageau
Thomas Cuvillier
Nabiha Chaumeix
The aim of the present work is to assess the risk of explosion in closed containments used for the transportation of nuclear materials or nuclear waste. Indeed, it is very well known that hydrogen can be produced due to (i) the radiolysis of different materials within the containment, (ii) the thermal decomposition of mainly the organic part in the containment. Since hydrogen has a very low ignition energy and a very wide flammability domain, it is important to determine the risk of ignition of the subsequent mixture produced by the aforementioned mechanisms.
NASA - Fundamentals of Cryogenics
Author(s)
Wesley Johnson
Thomas Tomsik
Jeff Moder
Course Objectives• Introduce the student to basic concepts in cryogenicsystems.• Introduce the student to basic hardware used incryogenic systems and what the function of thehardware is (i.e. why do you need that).• Introduce the student to what may be experiencedduring testing of cryogenic systems and what types ofmeasurements and instrumentation may be desired,needed, or required.• Introduce the student to various methods of modelingand analysis of cryogenic systems includingstrengths and weaknesses of various tools.
Disclaimer- The documents and references herein are for information purposes only and should not be construed as endorsement by the Hydrogen Safety Panel.
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.

Contact info

We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.

Recent Posts