The adoption of hydrogen (H²) as a clean, zero-carbon renewable energy source promises a global revolution, eliminating harmful emissions responsible for climate change. This white paper explores the opportunities and implications of an emerging hydrogen society. MSA Safety examines workplace safety risks and challenges posed when producing, handling, transporting, and storing alongside suggested best practices, safety measures, and detection technologies.
An under-expanded hydrogen jet from high-pressure equipment or storage tank is a potential incident scenario. Experiments demonstrated that the delayed ignition of a highly turbulent under-expanded hydrogen jet generates a blast wave able to harm people and damage property. There is a need for engineering tools to predict the pressure effects during such incidents to define hazard distances. The similitude analysis is applied to build a correlation using available experimental data.
This document applies to the recovery phase of a typical emergency management framework that includes planning, response, mitigation, and recovery. This document provides practical guidance with a checklist to help an organization recover from a hydrogen incident and return to normal operations after the event scene has been stabilized and returned to the organization by the incident commander. This document does not include activities related to the immediate emergency response and initial investigations performed by other entities.
This document provides an example safety plan in Attachment A associated with hydrogen and fuel cells, where there is a significant flammability or explosive hazard from quantities, pressures, exposures, or other conditions. Hydrogen is unique among flammable gases in that small quantities may result in ignition or explosions. This example safety plan was developed by Pacific Northwest National Laboratories (PNNL) and its Hydrogen Safety Panel (HSP) members to assist entities working with hydrogen to ensure the protection of life, property, and the environment.
The Hydrogen Safety Panel was established by the U.S. Department of Energy (DOE) to provide independent safety reviews and guidance to contractors in the DOE Hydrogen and Fuel Cells Program. In September 2017, the panel set up a task group to compile select hydrogen incidents from the H2Tools.org Lessons Learned database (https://h2tools.org/lessons) in a publication form for written reference, that are most pertinent to various types of DOE contractor projects. This report is the result of the task group’s work.
The ignition of a hydrogen-air mixture that has engulfed a typical set of ambient vaporizers (i.e., an array of finned tubes) may result in a deflagration-to-detonation transition (DDT). Simplified curve-based vapor cloud explosion (VCE) blast load prediction methods, such as the Baker-Strehlow-Tang (BST) method, would predict a DDT given that typical ambient vaporizerswould be rated as medium or high congestion and hydrogen is a high reactivity fuel (i.e., high laminar burning velocity).
Natural gas was first used as a vehicle fuel as far back as the 1930s. The first natural gas vehicles, which ran on uncompressed natural gas, were called “gas bag” vehicles and were used to combat gasoline shortages during World War I [1]. During and after World War II, compressed natural gas (CNG) vehicles using fuel tanks mounted on the roof gained popularity in France and Italy [2]. Today, there are more than 24 million CNG vehicles in service worldwide, including CNG buses that continue the early tradition of mounting fuel tanks on the roof.
We are professional and reliable provider since we offer customers the most powerful and beautiful themes. Besides, we always catch the latest technology and adapt to follow world’s new trends to deliver the best themes to the market.
Contact info
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.