- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
It’s not clear if “mobile” in the question refers to vehicle fuel tanks, or vessels used for transportation of hazardous materials.
FCEVs usually contain only a minimal amount of hydrogen fuel pressure (several Mpa) to support getting the car on and off car carriers. Panel members are not aware of any hydrogen release incidents during vehicle loading and don’t know what the probability of such a leak is considering the loading operations. A risk assessment accounting for the probability of collisions as well as leaks from…
Generally speaking, the International Fire Code and NFPA 2 apply to non-transportation use of hydrogen. These are maturing quickly, with NFPA 2 currently having issued its most recent edition in 2023. Standards for both on-board LH2 tanks and LH2 tankers for bulk fuel transport are managed by the U.S. Department of Transportation (DOT) and are well established. DOT transport requirements for…
Hydrogen gas storage and fuel cell systems are typically closed systems with a variety of monitoring and control functions to prevent leaks. Please check with the bus manufacturer and authority having jurisdiction to verify this is acceptable per their direction. However, a good safety practice would be to minimize the time spent indoors for these activities. Hydrogen vehicles maintained in a…
Example safety guidelines are listed below but may not be all-inclusive (e.g., they do not cover general practices such as lockout/tagout, management of change, job safety analysis), and most are the same as for gaseous hydrogen. Also reference NFPA 2 and CGA documents such as H-3, H-5, and H-7. Additional safety training material can also be found on the following link to courses and…
Hydrogen has been used as a fuel to operate cars, buses, trucks, submarines, aircraft, forklifts, trains and virtually every type of mobile equipment. Each has special considerations which often drive specific requirements for that vehicle type. For example, higher g-loadings of rail operations and operations within tunnels are a couple considerations, but there are no significant barriers…
All systems must be designed for the applicable operating parameters such as pressure, temperature,
and flow. The sub-cooled liquid hydrogen (sLH2) approach for fueling is comparable to other processes
commonly used to handle cryogenic liquids in the industrial gas industry where remaining gas is
condensed during the fill operation. These processes often operate above the critical…
Detection systems are nearly always installed but the system design and installation details of detection equipment are up to the manufacturer. Standards are being developed for this market.
Flare-less compression style fittings are commonly used. Choose tubing materials and tube wall thicknesses suitable for hydrogen and pressures you are using. Make sure all tubing joints are properly made, mechanically supported to minimize stress and vibration, are in a ventilated space, and are easily accessible for inspection and leak testing.
In general, indoor storage should be limited and the use of hydrogen indoors should be the least necessary. Look to store flammable gases outdoors in dedicated protected area when practicable. Check to see what adopted building and fire codes in your jurisdiction say. NFPA 2, Hydrogen Technology Code, Sections 6.4.1 and 16.3 prescribe requirements to limit hydrogen storage and use in…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.