- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
The HSP is not aware of any specific standards for this application, but LNG standards could serve as a useful starting point given the extensive maritime trade of LNG and its use in ship propulsion. Meeting LNG requirements could provide a minimum baseline, with additional considerations needed to account for the colder temperatures of liquid hydrogen (e.g., purging, air liquefaction,…
Neither section is a perfect fit for marine hydrogen fueling, but that is often the case with applying Codes. The most prudent approach is to…
The HSP is not aware of any immediate provisions in the IFC or CFC specific to maritime hydrogen fueling, but it would make sense for it to be addressed in either IFC Section 2309, Section 2310, or referenced in both. In NFPA 2, the HSP has not seen any proposals to date; however, anyone who…
If liquid hydrogen usage is sufficiently high at the fueling station, there may be no need to vent any boiloff generated from the LH2 storage tank. Boil-off gas should be minimized through system design, but where needed, the boil-off hydrogen along with any other hydrogen released must be vented through a local vent stack which is constructed to safely vent the hydrogen in accordance with CGA…
In the U.S., liquid hydrogen fueling stations and dispensing equipment are addressed within NFPA 2, Chapter 11. Dispensing is covered within Section 11.3. When liquefied hydrogen is used as the supply for high pressure gaseous fueling, then Chapter 10 of NFPA 2 would apply.
ISO standards are also being developed for global LH2 fueling protocols.
Many methods are used to mitigate the risk of a tube trailer hose loss of containment incident. Examples that otherwise exceed code requirements are provided below. These have been deployed in various combinations depending on the risk analysis for a particular system:
A "drop and swap" delivery system using tube trailers is a common and accepted method of supply for both industrial and fueling station applications. While NFPA 2 - 2023, paragraph 10.6.3.5 states, "The use of hose in a hydrogen dispensing system shall be limited to vehicle fueling hose," this is intended for the dispenser itself, not the entire fueling station. This does not limit the use of…
Gaseous hydrogen can be stored forever as long as the system integrity is maintained. However, liquid hydrogen is “use it or lose it” and will boil from system heat leak and build pressure unless it is used or vented. This is not usually an issue for continuous use or low-pressure applications which can use hydrogen gas pressure directly from the tank.
For intermittent or high…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.