- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
The HSP is not aware of any specific standards for this application, but LNG standards could serve as a useful starting point given the extensive maritime trade of LNG and its use in ship propulsion. Meeting LNG requirements could provide a minimum baseline, with additional considerations needed to account for the colder temperatures of liquid hydrogen (e.g., purging, air liquefaction,…
Neither section is a perfect fit for marine hydrogen fueling, but that is often the case with applying Codes. The most prudent approach is to…
The HSP is not aware of any immediate provisions in the IFC or CFC specific to maritime hydrogen fueling, but it would make sense for it to be addressed in either IFC Section 2309, Section 2310, or referenced in both. In NFPA 2, the HSP has not seen any proposals to date; however, anyone who…
If liquid hydrogen usage is sufficiently high at the fueling station, there may be no need to vent any boiloff generated from the LH2 storage tank. Boil-off gas should be minimized through system design, but where needed, the boil-off hydrogen along with any other hydrogen released must be vented through a local vent stack which is constructed to safely vent the hydrogen in accordance with CGA…
Example safety guidelines are listed below but may not be all-inclusive (e.g., they do not cover general practices such as lockout/tagout, management of change, job safety analysis), and most are the same as for gaseous hydrogen. Also reference NFPA 2 and CGA documents such as H-3, H-5, and H-7. Additional safety training material can also be found on the following link to courses and…
In the U.S., liquid hydrogen fueling stations and dispensing equipment are addressed within NFPA 2, Chapter 11. Dispensing is covered within Section 11.3. When liquefied hydrogen is used as the supply for high pressure gaseous fueling, then Chapter 10 of NFPA 2 would apply.
ISO standards are also being developed for global LH2 fueling protocols.
Flare-less compression style fittings are commonly used. Choose tubing materials and tube wall thicknesses suitable for hydrogen and pressures you are using. Make sure all tubing joints are properly made, mechanically supported to minimize stress and vibration, are in a ventilated space, and are easily accessible for inspection and leak testing.
In general, indoor storage should be limited and the use of hydrogen indoors should be the least necessary. Look to store flammable gases outdoors in dedicated protected area when practicable. Check to see what adopted building and fire codes in your jurisdiction say. NFPA 2, Hydrogen Technology Code, Sections 6.4.1 and 16.3 prescribe requirements to limit hydrogen storage and use in…
Purging is not recommended as a continuous part of vent stack operation. However, maintenance activity is a transient event and it’s prudent and recommended to purge a vent system prior to performing maintenance. It’s always possible that hydrogen could be leaking internally from a valve or other component and therefore create a hazard. Of particular note, care must be taken that proper…
We are not aware of a study for blended NG/H2. However, for high concentrations of NG, the vent system should be similar to NG, which still recommends a vent system as NG is less dense than air. For nearly pure hydrogen the recommendations of this presentation are in effect.
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.