- Home
-
Resources
- Center for Hydrogen Safety
- Hydrogen Fuel Cell Codes and Standards
- Learnings & Guidance
- Paper & References
- Web-based Toolkits
- Workforce Development
- Contact
- About H2Tools
Situations where extinguishing a hydrogen leak prior to stopping flow is safer are rare. Hydrogen releases have a high potential for inadvertent re-ignition and subsequent explosion. Some vent stacks might be equipped with an extinguishing system, but these often can be more hazardous than allowing a properly designed vent stack to continue to burn until the source is isolated.
No, this is not a common or preferred approach. Isolating the source of hydrogen is the best safety practice. Water systems could extinguish the flame but allow the gas to continue leaking and result in an explosion if reignited.
This is a complicated subject. Thermally activated pressure relief devices can be an important safeguard for hydrogen vessels if properly designed and installed in accordance with code requirement. Requirements vary globally and often depend on the type of vessel and its intended service (e.g. mobile or stationary). However, as with any device, TPRD’s offer both advantages and disadvantages.…
Requirements for TPRD/PRD’s depend on the local regulations. Some jurisdictions require them, some do not. Others make them optional based on results of performance testing.
Hydrogen has been transported safely through pipelines for over 50 years. There are dozens of pipeline networks in safe operation globally, with several individual networks that approach up to 1000 miles.
Significant testing and some demonstration projects are underway to ensure safety. Some of the aspects under investigation include compatibility of the pipe and other materials,…
Documents such as NFPA 2, Hydrogen Technologies Code, and the International Fire Code have quantity thresholds that differentiate requirements for the design of systems and enclosures. However, even the smaller quantities present a hazard under specific conditions, especially for systems that have the potential to release hydrogen into a confined or unvented space. Good engineering judgement…
Nitrogen/helium blends are frequently used to leak test hydrogen systems.
All systems must be designed for the applicable operating parameters such as pressure, temperature,
and flow. The sub-cooled liquid hydrogen (sLH2) approach for fueling is comparable to other processes
commonly used to handle cryogenic liquids in the industrial gas industry where remaining gas is
condensed during the fill operation. These processes often operate above the critical…
Hydrogen has been used as a fuel to operate cars, buses, trucks, submarines, aircraft, forklifts, trains and virtually every type of mobile equipment. Each has special considerations which often drive specific requirements for that vehicle type. For example, higher g-loadings of rail operations and operations within tunnels are a couple considerations, but there are no significant barriers…
The suspected cause was a mixture of oxygen and hydrogen that passed downstream from the electrolysis unit into several storage vessels. Hydrogen-oxygen mixtures are very hazardous. Subsequent ignition resulted in internal pressure that exceeded the limits of the storage system. The design of electrolyzers, detection of upset conditions, and preventing the accumulation of oxygen within the…
We are the leaders in the building industries and factories. We're word wide. We never give up on the challenges.